PCA reorients data so axes explain variance in "decreasing order"
→ can "flatten" (*project*) data onto a few axes that captures most variance

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAGp8/ Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg

PCA would just flatten this thing and lose the information that the data actually lives on a 1D line that has been curved!

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/ Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg

This is the desired result

Goal: Low-dimensional representation where similar colored points are near each other (we don't actually get to see the colors)

Manifold Learning

- Nonlinear dimensionality reduction (in contrast to PCA which is linear)
- Find low-dimensional "manifold" that the data live on

Basic idea of a manifold:

1. Zoom in on any point (say, x)

 The points near x look like they're in a lower-dimensional Euclidean space (e.g., a 2D plane in Swiss roll)

Image source: http://www.columbia.edu/~jwp2128/Images/faces.jpeg

Phillip Isola, Joseph Lim, Edward H. Adelson. Discovering States and Transformations in Image Collections. CVPR 2015.

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/wordembeddings-994x675.png

Mnih, Volodymyr, et al. Human-level control through deep reinforcement learning. Nature 2015.

Manifold Learning with Isomap

Step 3: It turns out that given all the distances between pairs of points, we can compute what the points should be (the algorithm for this is called *multidimensional scaling*)

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А					
В					
С					
D					
E					

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0				
В		0			
С			0		
D				0	
Е					0

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5			
В		0	5		
С			0	5	
D				0	5
E					0

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8		
В		0	5		
С			0	5	
D				0	5
E					0

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	
В		0	5		
С			0	5	
D				0	5
E					0

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В		0	5		
С			0	5	
D				0	5
E					0

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В		0	5	10	
С			0	5	
D				0	5
E					0

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В		0	5	10	13
С			0	5	
D				0	5
E					0

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В		0	5	10	13
С			0	5	8
D				0	5
E					0

In orange: road lengths

2 nearest neighbors of A: B, C

- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В	5	0	5	10	13
С	8	5	0	5	8
D	13	10	5	0	5
E	16	13	8	5	0

In orange: road lengths

- 2 nearest neighbors of A: B, C
- 2 nearest neighbors of B: A, C
- 2 nearest neighbors of C: B, D
- 2 nearest neighbors of D: C, E

2 nearest neighbors of E: C, D

Build "symmetric 2-NN" graph (add edges for each point to its 2 nearest neighbors)

	А	В	С	D	E
А	0	5	8	13	16
В	T multi	his mat <i>dimens</i>	rix gets <i>ional</i> so	s fed int c <i>aling</i> to	o o get _
С	⁸ 1D	versior	n of A,	B, C, D	, Е ⁸
D	¹³ Th	e soluti	on is no	ot uniqu	Je! 5
E	16	13	8	5	0

Multidimensional scaling demo

3D Swiss Roll Example

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 2000.

Some Observations on Isomap

In general: try different parameters for nearest neighbor graph construction when using Isomap + visualize

t-SNE (t-distributed stochastic neighbor embedding)

t-SNE High-Level Idea #1

- Don't use deterministic definition of which points are neighbors
- Use probabilistic notation instead

t-SNE High-Level Idea #2

 In low-dim. space (e.g., 1D), suppose we just randomly assigned coordinates as a candidate for a low-dimensional representation for A, B, C, D, E (I'll denote them with primes):

• With any such candidate choice, we can define a probability distribution for these <u>low-dimensional</u> points being similar

t-SNE High-Level Idea #3

• Keep improving low-dimensional representation to make the following two distributions look as closely alike as possible

Technical Detail for t-SNE

Fleshing out high level idea #1

Suppose there are *n* high-dimensional points $x_1, x_2, ..., x_n$

For a specific point *i*, point *i* picks point $j \neq i$ to be a neighbor with probability:

$$p_{j|i} = \frac{\exp(-\frac{\|x_i - x_j\|^2}{2\sigma_i^2})}{\sum_{k \neq i} \exp(-\frac{\|x_i - x_k\|^2}{2\sigma_i^2})}$$

 σ_i (depends on *i*) controls the probability in which point *j* would be picked by *i* as a neighbor (think about when it gets close to 0 or when it explodes to ∞)

 σ_i is controlled by a knob called 'perplexity'

(rough intuition: it is like selecting small vs large neighborhoods for Isomap)

Points *i* and *j* are "similar" with probability: $p_{i,j} = \frac{p_{j|i} + p_{i|j}}{2n}$ This defines the earlier blue distribution

Technical Detail for t-SNE

Fleshing out high level idea #2

Denote the *n* low-dimensional points as x_1', x_2', \ldots, x_n'

Low-dim. points *i* and *j* are "similar" with probability: $q_{i,j} = \frac{\frac{1}{1+||x'_i-x'_j||^2}}{\sum_{k \neq m} \frac{1}{1+||x'_k-x'_m||^2}}$

This defines the earlier green distribution

Fleshing out high level idea #3

Use gradient descent (with respect to $q_{i,j}$) to minimize:

$$\sum_{i\neq j} p_{i,j} \log \frac{p_{i,j}}{q_{i,j}}$$

This is the KL-divergence between distributions *p* and *q*

Manifold Learning with t-SNE

Demo

Important: Handwritten digit demo was a toy example where we know which images correspond to digits 0, 1, ... 9

Visualization is a way of debugging data analysis!

Example: Trying to understand how people interact in a social network

Many real UDA problems:

The data are **messy** and it's not obvious what the "correct" labels/answers look like, and "correct" is ambiguous!

This is largely why I am covering "supervised" methods (require labels) *after* "unsupervised" methods (don't require labels)

Top right image source: https://bost.ocks.org/mike/miserables/

Dimensionality Reduction for Visualization

- There are many methods (I've posted a link on the course webpage to a scikit-learn Swiss roll example using ~10 methods)
- PCA is very well-understood; the new axes can be interpreted
- Nonlinear dimensionality reduction: new axes may not really be all that interpretable (you can scale axes, shift all points, etc)
- PCA and t-SNE are good candidates for methods to try first
- If you have good reason to believe that only certain features matter, of course you could restrict your analysis to those!